Поразительно мало известно об авторе знаменитых "Начал" Евклиде. Создатель поистине фундаментального труда так и останется практически неизвестной личностью, но невероятно значимой фигурой в мире науки.
О знаменитом древнегреческом математике Евклиде нам известно достоверно лишь то, что жил он в IV-III веках до н.э. и провел большую часть жизни в Александрии. Совсем немного сведений дают о нём авторы, такие как Архимед, Прокл и Папп Александрийский. Обширную и детализированную биографию Евклида написали также арабские авторы. Одна из арабских рукописей XII века утверждает, что Евклид, известный как «Геометр», был сыном некоего Наукрата, родился в Тире и проживал в Сирии. Но в исторической науке эта биография учёного считается полностью вымышленной. Напротив, упоминание о Евклиде Проклом считается достоверным. В своих «Комментариях к первой книге «Начал» Евклида» он указывает, что учёный жил во времена Птолемея I Сотера, аргументируя это тем, что «Архимед … упоминает об Евклиде и, в частности, рассказывает, что Птолемей спросил его, есть ли более короткий путь изучения геометрии, нежели «Начала»; а тот ответил, что нет царского пути к геометрии». Все выше названные, кроме арабских авторов, упоминают о Евклиде только как об авторе знаменитого сочинения «Начала» - его главного труда, написанного примерно в 300 году до н.э. Известно также, что Евклид был первым математиком Александрийской школы и работал при знаменитой Александрийской библиотеке.
Состоящие из 13 книг на древнегреческом, «Начала» представляют собой первый систематизированный теоретический трактат по математике и геометрии. Они стали своего рода итогом развития всей античной науки, дав огромный толчок последующим исследованиям. С самого появления работы к ней писали комментарии другие учёные, начиная от Прокла и заканчивая арабскими и европейскими авторами Средневековья и Нового времени, среди которых были Галилео Галилей, Рене Декарт, Исаак Ньютон. Некоторые исследователи утверждают, что «Начала» были самой популярной и значимой книгой в Средневековой Европе. Объясняется это тем, что вплоть до XX века изучение «Начал» Евклида было обязательным требованием для студентов всех университетов. Это была самая первая математическая работа, напечатанная после изобретения печатного станка. Первый выпуск в Европе вышел в 1482 году в Венеции.
Начало каждой из 13-ти книг состоит из определений, аксиом и постулатов. Затем идут задачи на построение и теоремы, а после – доказательства этих теорем и решение задач. В своей работе Евклид не ссылается на своих предшественников, а лишь опирается на их результаты. Исследователи установили, что он пользовался работами Гиппократа Хиосского, Евдокс Книдского, Теэтета Афинского и работами разных пифагорейцев.
Первая книга посвящена изучению свойств прямоугольных треугольников и параллелограммов. В ней же рассматривается знаменитая теорема Пифагора, доказательство которой Евклидом стало одним из самых распространенных среди всех доказательств в современной науке. Но самым интересным является 5-ый постулат Евклида, который гласит, что «если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых». Этот постулат впоследствии комментировался и исследовался многими учёными, что привело к появлению неевклидовой геометрии в Новом времени. В неевклидовой геометрии пространство представляется искривленным, в отличие от нулевой кривизны пространства классической евклидовой геометрии.
Вторая, третья и четвертая книги основаны на трудах пифагорейцев и раскрывают задачи и теоремы геометрии окружностей, их касательных и хорд, вписанных и описанных многоугольников, построения правильных многоугольников. В пятой книге рассматривается общая теория отношений или теория пропорций величин, которую разработал Евдокс Книдский, дошедшая до нас только в «Началах». В шестой книге на практике применяется теория отношений для доказательства подобия геометрических фигур. На этом заканчивается первая часть «Начал», в которой рассматривались одноплоскостные фигуры.
Седьмая, восьмая и девятая книги посвящены элементарной теории чисел. В них рассматриваются свойства простых чисел, их делимость, пропорции, геометрическая прогрессия и суммы прогрессий, бесконечность простых чисел и строительство совершенных чисел. Также в седьмой книге Евклид предлагает своей алгоритм нахождения наибольшего общего делителя и наименьшего общего кратного. Самая объемная десятая книга представляет собой попытку классификации несоизмеримых (в современном понимании, иррациональных) величин.
Книги с одиннадцатой по тринадцатую – это теория пространственной геометрии или стереометрии. Одиннадцатая воплощает теории первых шести книг в пространстве – перпендикулярность, параллелизм, объемы параллелепипедов. В двенадцатой рассказывается об исследованиях объемов конусов, пирамид и цилиндров. И, наконец, в тринадцатой книге описываются пять правильных многогранников или платоновых тел, вписанных в сферу, и доказывается, что их не может быть больше.
Считается, что свой математический труд Евклид написал, работая в Александрийской библиотеке. Александрийская библиотека представляла собой не просто огромное собрание разнообразных книг и источников, а была местом, где собирались виднейшие представители наук, вели дискуссии, работали над своими трудами и представляли их на всеобщее обозрение. В разное время в ней работали Эратосфен Киренский, Аристофан, Архимед, Птолемей и многие другие. Неудивительно, что Евклид, находясь в такой благоприятной для развития мысли обстановке смог создать действительно уникальное произведение, по величине и значимости соизмеримое с важнейшими открытиями современного мира.
Кроме «Начал» сохранилось всего 4 произведения Евклида: «Явления» (о применении сферической геометрии в астрономии), «Данные» (о построении фигур), «О делении» (применительно к геометрическим фигурам) и «Оптика» (о распространении света). Сохранились косвенные данные о других сочинениях учёного. К тому же традиционно Евклиду приписывают авторство ещё двух произведений – теория зеркал «Катоптрика» и трактат по теории музыки «Деление канона», но установить их авторство не представляется возможным.
Подводя итог, можно говорить о том, что Евклид и его «Начала» имеют действительно огромное значение для науки. Систематизировав и обобщив прошлые достижения математиков, сделав свои открытия, Евклид создал фундаментальный труд, который стал важной частью современной математики и геометрии. И хотя нам практически ничего не известно о том, каким человеком был Евклид, и как проходила его научная деятельность, но результат этой деятельности, несомненно, вызывает восхищение и уважение. Евклид стал своего рода границей в науке, собрав воедино научные достижения прошлого и дав сильный задел для развития исследований будущего. В честь него названы космический летательный аппарат для изучения геометрии темной материи, город в США, алгоритм для получения традиционного музыкального ритма и многие математические открытия более позднего времени.